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INTRODUCTION 
Artificial intelligence (AI) and machine learning (ML) have emerged as transformative technologies with the potential to 
revolutionize various domains, including healthcare [1]. These advanced computational methods enable systems to learn 

from data, identify patterns, and make decisions with minimal human intervention [2]. In the field of anesthesiology, AI 

and ML are increasingly being explored as powerful tools to enhance patient care, optimize clinical decision-making, and 

improve outcomes [3]. 

 

Anesthesia monitoring is a critical aspect of perioperative care, involving the continuous assessment of a patient's 

physiological parameters to ensure safe and effective anesthesia delivery [4]. Traditional anesthesia monitoring relies on 

the vigilance and expertise of anesthesiologists to interpret multiple data streams and make real-time decisions [5]. 

However, the complexity and volume of data generated during anesthesia, coupled with the need for rapid and accurate 

interpretation, present significant challenges for human cognition [6]. 

AI and ML offer promising solutions to address these challenges by leveraging the vast amounts of data collected during 
anesthesia monitoring [7]. These technologies can analyze complex patterns, detect subtle changes, and provide insights 

that may be difficult for humans to discern [8]. By integrating AI and ML into anesthesia monitoring systems, 

anesthesiologists can be equipped with intelligent decision support tools that augment their clinical judgment and 

enhance patient safety [9]. 

The potential applications of AI and ML in anesthesia monitoring are diverse and far-reaching. One key area is the 

prediction of adverse events, such as hypotension or hypoxemia, which can have serious consequences if not promptly 

 

 

Anesthesia and Pain Medicine 
Abbreviation: Anesth Pain Med. 

Open Access 
Volume: 19: Issue:04 

Year: 2024 

 
Systematic Review of the role of Artificial Intelligence and Machine learning 
in Optimizing Anaesthesia monitoring 
Rajkumar Ramasamy 
 
Specialist Anaesthetist, MEDCARE Orthopedics and Spine Hospital- Dubai  

 

 
Corresponding Author 
Rajkumar Ramasamy,         
Specialist Anaesthetist, MEDCARE 
Orthopedics and Spine Hospital- 
Dubai . 

ABSTRACT 
Artificial intelligence (AI) and machine learning (ML) are transforming the 

landscape of anesthesia monitoring, offering unprecedented opportunities to 

enhance patient safety, optimize clinical decision-making, and improve 

outcomes. This review article provides a comprehensive overview of the 

current state of AI and ML techniques in anesthesia monitoring, focusing on 

their potential applications, challenges, and future directions. The article 

explores how AI and ML can be leveraged to predict adverse events, optimize 
anesthetic drug dosing, monitor depth of anesthesia, manage postoperative pain, 

and monitor neuromuscular blockade. It also discusses the challenges and 

limitations associated with the implementation of AI and ML in anesthesia 

monitoring, including data quality and availability, interpretability and 

explainability of AI models, ethical considerations, regulatory challenges, and 

integration with existing clinical workflows. The future directions for AI and 

ML in anesthesia monitoring are outlined, emphasizing the development of 

real-time decision support systems, personalized anesthesia care, integration 

with other medical devices and systems, and continuous learning and model 

adaptation. The article concludes by summarizing the key points, highlighting 

the potential impact of AI and ML on anesthesia practice, and calling for further 

research and development to address the identified challenges and realize the 
full potential of these technologies in anesthesia monitoring. 

 

Keywords: artificial intelligence, machine learning, anesthesia monitoring, 

decision support, personalized care. 

Article History: 

Received : 08-10-2024 
Accepted : 24-11-2024 
Available Online: 30-12-2024 
 
 
 
How to Cite the Article:  

Rajkumar Ramasamy, et al.  Systematic 

Review of the role of Artificial Intelligence 
and Machine learning in Optimizing 
Anaesthesia monitoring, Anesthesia and 
Pain Medicine. 2024; 19(4): 
 

 



Anesthesia And Pain Medicine 
p-ISSN: 1975-5171 | e-ISSN:2383-7977 

166 

 

detected and managed [10]. ML algorithms can be trained on large datasets of patient physiological parameters to 

identify patterns and risk factors associated with these events, enabling early intervention and preventive measures [3]. 

Despite the immense potential of AI and ML in anesthesia monitoring, several challenges and limitations need to be 

addressed. One major challenge is the quality and availability of data for training ML models [6]. Anesthesia monitoring 

generates vast amounts of heterogeneous data, but much of it may be unstructured, noisy, or incomplete [7]. Robust data 
preprocessing, standardization, and integration strategies are necessary to ensure the reliability and generalizability of AI 

models [8]. 

Ethical considerations surrounding the use of AI in healthcare are also crucial. Issues such as data privacy, informed 

consent, algorithmic bias, and accountability need to be carefully addressed [2]. Regulatory frameworks and guidelines 

are evolving to ensure the safe and responsible deployment of AI in clinical settings [1]. 

In conclusion, AI and ML have the potential to transform anesthesia monitoring by enhancing patient safety, optimizing 

clinical decision-making, and improving outcomes. By leveraging the vast amounts of data generated during anesthesia, 

these technologies can provide intelligent decision support and predict adverse events. However, challenges related to 

data quality, ethics, and integration need to be addressed to realize the full potential of AI in anesthesia practice. Further 

research and development are necessary to harness the power of AI and ML in anesthesia monitoring and shape the future 

of perioperative care. 

 

AIMS AND METHODS 
Aims: The primary aim of this review article is to provide a comprehensive overview of the current state of artificial 

intelligence (AI) and machine learning (ML) techniques in anesthesia monitoring. The review seeks to: 

1. Highlight the potential of AI and ML in enhancing patient care, optimizing clinical decision-making, and 

improving outcomes in anesthesia practice. 

2. Describe the various AI and ML techniques, including supervised learning, unsupervised learning, and deep 
learning, and their applications in anesthesia monitoring. 

3. Discuss the challenges and limitations associated with the implementation of AI and ML in anesthesia 

monitoring, such as data quality, interpretability, and ethical considerations. 

4. Identify future directions and opportunities for research and development in the field of AI and ML in anesthesia 

monitoring. 

 

METHODS 
This review article employs a comprehensive literature search and narrative synthesis methodology to summarize and 

critically evaluate the current evidence on AI and ML techniques in anesthesia monitoring. The methods include: 

1. Literature search: A systematic literature search was conducted using PubMed, Scopus, and IEEE Xplore 

databases. The search terms included combinations of "artificial intelligence," "machine learning," "deep 

learning," "anesthesia," "monitoring," and related keywords. The search was limited to articles published in 

English between 2010 and 2023. 

2. Study selection: The retrieved articles were screened for relevance based on their titles and abstracts. Studies 

that applied AI and ML techniques to anesthesia monitoring were included. Animal studies, case reports, and 

conference abstracts were excluded. 

3. Data extraction: Data were extracted from the selected studies, including the AI and ML techniques used, the 

specific application in anesthesia monitoring, the study design, sample size, and key findings. 
4. Narrative synthesis: The extracted data were synthesized narratively, organizing the information into themes 

based on the AI and ML techniques and their applications in anesthesia monitoring. The synthesis focused on 

the strengths, limitations, and future directions of each technique. 

5. Critical appraisal: The included studies were critically appraised for their methodological quality, considering 

factors such as study design, sample size, and potential biases. The strength of evidence was assessed based on 

the quality and consistency of the findings across studies. 

 

AI and ML Techniques in Anesthesia Monitoring 

Artificial intelligence and machine learning encompass a wide range of techniques that can be applied to anesthesia 

monitoring. These techniques can be broadly categorized into supervised learning, unsupervised learning, and deep 

learning [11]. 

Supervised Learning 
Supervised learning involves training algorithms on labeled data, where the desired output is known [12]. The algorithm 

learns to map input features to the corresponding output labels, enabling it to make predictions on new, unseen data. In 

the context of anesthesia monitoring, supervised learning can be used for tasks such as predicting adverse events or 

estimating the depth of anesthesia [13]. 

Classification Algorithms 
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Classification algorithms are used when the output variable is categorical, such as predicting the presence or absence of 

an adverse event. Common classification algorithms include logistic regression, decision trees, random forests, and 

support vector machines [14]. These algorithms learn decision boundaries that separate different classes based on input 

features. For example, a classification algorithm could be trained to predict the risk of postoperative nausea and vomiting 

based on patient characteristics and intraoperative variables [15]. 
Regression Algorithms 

Regression algorithms are used when the output variable is continuous, such as estimating the depth of anesthesia or 

predicting the duration of action of a drug. Linear regression, polynomial regression, and support vector regression are 

commonly used regression algorithms [16]. These algorithms learn a function that maps input features to the continuous 

output variable. For instance, a regression algorithm could be trained to predict the required dose of an anesthetic agent 

based on patient demographics, physiological parameters, and surgical factors [17]. 

Unsupervised Learning 

Unsupervised learning involves discovering patterns and structures in unlabeled data, where the desired output is not 

known [18]. The algorithm learns to identify inherent groupings or associations in the data without explicit guidance. 

Unsupervised learning can be used for tasks such as clustering patients based on their physiological profiles or reducing 

the dimensionality of complex anesthesia monitoring data [19]. 

Clustering Algorithms 
Clustering algorithms group similar data points together based on their intrinsic properties. Common clustering 

algorithms include k-means, hierarchical clustering, and Gaussian mixture models [20]. In anesthesia monitoring, 

clustering can be used to identify subgroups of patients with distinct physiological patterns or to discover associations 

between different variables. For example, clustering algorithms could be applied to identify patients with similar 

responses to anesthetic agents or to group patients based on their risk profiles [21]. 

Dimensionality Reduction Techniques 

Dimensionality reduction techniques aim to transform high-dimensional data into a lower-dimensional representation 

while preserving important information [22]. Principal component analysis (PCA) and t-distributed stochastic neighbor 

embedding (t-SNE) are widely used dimensionality reduction methods. These techniques can be applied to anesthesia 

monitoring data to identify the most informative features, reduce noise, and visualize complex relationships between 

variables [23]. Dimensionality reduction can facilitate the development of more efficient and interpretable ML models for 
anesthesia monitoring [24]. 

Deep Learning 

Deep learning is a subfield of machine learning that uses artificial neural networks with multiple layers to learn 

hierarchical representations of data [25]. Deep learning algorithms can automatically learn complex patterns and features 

from raw data, making them particularly suitable for analyzing high-dimensional and unstructured data in anesthesia 

monitoring [26]. 

Artificial Neural Networks 

Artificial neural networks (ANNs) are the building blocks of deep learning models. ANNs consist of interconnected 

nodes organized in layers, inspired by the structure of biological neural networks [27]. Each node applies a nonlinear 

transformation to its inputs and passes the result to the next layer. ANNs can learn to approximate complex functions and 

capture intricate relationships in data. In anesthesia monitoring, ANNs have been used for tasks such as predicting 

postoperative complications, estimating blood pressure from photoplethysmography signals, and detecting artifacts in 
anesthesia monitoring data [28]. 

Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a type of deep learning architecture particularly well-suited for processing 

grid-like data, such as images or time series [29]. CNNs apply convolutional filters to extract local features and patterns 

from the input data. They have achieved remarkable success in various domains, including computer vision and signal 

processing. In anesthesia monitoring, CNNs have been used for tasks such as analyzing electroencephalogram (EEG) 

signals to assess the depth of anesthesia, detecting surgical phases from video recordings, and identifying respiratory 

events from capnography waveforms [30]. 

Recurrent Neural Networks 

Recurrent neural networks (RNNs) are designed to handle sequential data, where the output depends on the current input 

as well as the previous inputs in the sequence [31]. RNNs have internal memory that allows them to capture temporal 
dependencies and context. Long short-term memory (LSTM) and gated recurrent unit (GRU) are popular variants of 

RNNs that address the vanishing gradient problem and enable learning of long-term dependencies. RNNs have been 

applied in anesthesia monitoring for tasks such as predicting patient arousal during surgery, forecasting blood pressure 

trends, and analyzing time series data from multiple monitoring devices [32]. 

The choice of AI and ML technique depends on the specific problem at hand, the nature of the available data, and the 

desired output. Supervised learning is suitable when labeled data is available and the goal is to predict a specific 

outcome. Unsupervised learning is useful for exploring patterns and structures in unlabeled data. Deep learning models, 

such as ANNs, CNNs, and RNNs, are powerful tools for handling complex and high-dimensional data in anesthesia 
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monitoring. By leveraging these techniques, researchers and clinicians can develop intelligent systems that can assist in 

decision-making, early detection of adverse events, and personalized anesthesia care. 

 

Applications of AI and ML in Anesthesia Monitoring 

Prediction of adverse events 
AI and ML techniques have shown promise in predicting adverse events during anesthesia, such as hypotension and 

hypoxemia. Kang et al. [33] developed a deep learning model using convolutional neural networks to predict hypotension 

events during surgery, achieving an area under the receiver operating characteristic curve (AUROC) of 0.92. Similarly, 

Lee et al. [34] used a gradient boosting machine algorithm to predict intraoperative hypoxemia, demonstrating an 

AUROC of 0.91. These studies highlight the potential of AI and ML in providing early warnings for adverse events, 

allowing for timely interventions and improved patient safety [35]. 

Optimization of anesthetic drug dosing 

Optimizing anesthetic drug dosing is crucial for maintaining adequate anesthesia while minimizing side effects. AI and 

ML techniques can assist in personalizing drug dosing based on patient characteristics and real-time physiological data. 

Sakthivel et al. [17] developed an artificial neural network model to optimize propofol dosing during anesthesia, 

considering factors such as age, weight, and heart rate. The model showed promising results in simulated data, 

demonstrating the potential for AI-guided drug dosing optimization. Future research should focus on validating these 
models in clinical settings and integrating them with closed-loop anesthesia delivery systems [36]. 

Monitoring depth of anesthesia 

Assessing the depth of anesthesia is essential for ensuring adequate analgesia and preventing intraoperative awareness. 

AI and ML techniques have been applied to analyze EEG signals and other physiological parameters to provide a more 

accurate estimation of anesthetic depth. Lee et al. [30] used a deep learning approach with convolutional neural networks 

to predict the bispectral index (BIS) during propofol-remifentanil anesthesia, achieving a mean absolute error of 4.4 BIS 

units. These AI-based models can potentially overcome the limitations of traditional depth of anesthesia monitoring and 

provide a more reliable assessment of the patient's anesthetic state [37]. 

Postoperative pain management 

Effective postoperative pain management is crucial for patient comfort and recovery. AI and ML techniques can assist in 

predicting postoperative pain intensity and optimizing pain management strategies. Tighe et al. [38] developed a machine 
learning model using random forests to predict postoperative pain in patients undergoing knee arthroplasty, achieving an 

AUROC of 0.81. By identifying patients at risk of severe postoperative pain, AI-based models can guide personalized 

pain management approaches, including targeted analgesic regimens and non-pharmacological interventions [39]. 

Monitoring neuromuscular blockade 

Monitoring neuromuscular blockade is essential for ensuring optimal surgical conditions and preventing residual 

paralysis. AI and ML techniques can analyze neuromuscular monitoring data to provide real-time guidance on the 

titration of neuromuscular blocking agents and reversal agents. Vas et al. [40] used a decision tree algorithm to predict the 

need for neostigmine reversal based on train-of-four monitoring data, achieving an accuracy of 88%. AI-based models 

can assist anesthesiologists in making informed decisions regarding neuromuscular management, potentially reducing the 

incidence of residual neuromuscular blockade and associated complications [41]. 

 

Challenges and Limitations 
Data quality and availability 

One of the major challenges in developing AI and ML models for anesthesia monitoring is the quality and availability of 

data. Anesthesia monitoring generates vast amounts of heterogeneous data, including physiological signals, drug 

administration records, and patient characteristics. However, much of this data may be unstructured, noisy, or incomplete, 

hindering the development of accurate and reliable AI models [42]. Efforts are needed to establish standardized data 

collection protocols, ensure data integrity, and promote data sharing among institutions to facilitate the development of 

robust AI models [43]. 

Interpretability and explainability of AI models 

Many AI and ML models, particularly deep learning models, operate as "black boxes," making it difficult to understand 

how they arrive at their predictions or decisions. This lack of interpretability and explainability can hinder the trust and 

acceptance of AI-based systems among clinicians and patients [44]. Efforts are underway to develop explainable AI 
techniques that provide insights into the reasoning behind model outputs, such as feature importance analysis and rule 

extraction [45]. Enhancing the interpretability and explainability of AI models is crucial for their successful integration 

into clinical practice and for facilitating informed decision-making [46]. 

Ethical considerations 

The use of AI and ML in anesthesia monitoring raises several ethical considerations. Ensuring patient privacy and data 

security is of utmost importance when collecting and analyzing sensitive medical data [47]. Informed consent processes 

may need to be adapted to include the use of AI-based systems in patient care. Additionally, the potential for algorithmic 

bias and disparities in AI model performance across different patient populations must be addressed to ensure equitable 
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and fair treatment [48]. Engaging patients, clinicians, and ethicists in the development and deployment of AI systems is 

essential to navigate these ethical challenges and maintain public trust [49]. 

Regulatory challenges 

The regulatory landscape for AI and ML in healthcare is still evolving, posing challenges for the translation of these 

technologies into clinical practice. Regulatory agencies, such as the US Food and Drug Administration (FDA), are 
developing frameworks for the evaluation and approval of AI-based medical devices [50]. However, the rapid pace of AI 

development and the need for continuous model updates present unique challenges for traditional regulatory pathways. 

Collaborative efforts between regulatory bodies, industry, and academia are necessary to establish clear guidelines and 

standards for the development, validation, and monitoring of AI systems in anesthesia monitoring [51]. 

Integration with existing clinical workflows 

Integrating AI and ML systems into existing clinical workflows is another significant challenge. Anesthesia monitoring 

involves a complex interplay of multiple devices, systems, and human factors [52]. Seamless integration of AI-based 

decision support tools requires careful design, usability testing, and training to ensure effective adoption and utilization 

by anesthesiologists. Interoperability standards and data exchange protocols need to be established to facilitate the 

integration of AI systems with electronic health records, monitoring devices, and other clinical information systems [53]. 

Addressing these integration challenges is crucial for realizing the full potential of AI and ML in anesthesia monitoring 

and improving patient care [54]. 

 

Future Directions 

Real-time decision support systems 

One of the key future directions for AI and ML in anesthesia monitoring is the development of real-time decision support 

systems. These systems would continuously analyze streaming data from multiple monitoring devices and provide real-

time guidance to anesthesiologists [55]. For example, an AI-powered decision support system could alert the 

anesthesiologist to impending adverse events, suggest optimal drug dosing adjustments, or recommend interventions 

based on the patient's physiological state. Real-time decision support systems have the potential to enhance situational 

awareness, reduce cognitive workload, and improve patient safety [56]. 

Personalized anesthesia care 

AI and ML techniques can enable personalized anesthesia care by tailoring anesthetic management to individual patient 
characteristics and preferences. By integrating patient-specific data, such as genetic information, comorbidities, and 

previous anesthetic experiences, AI models can predict patient responses to anesthetic agents and guide personalized drug 

selection and dosing [57]. Personalized anesthesia care has the potential to optimize patient outcomes, minimize side 

effects, and improve patient satisfaction [58]. 

Integration with other medical devices and systems 

The future of AI and ML in anesthesia monitoring lies in the integration of these technologies with other medical devices 

and systems. For example, AI-powered anesthesia monitoring could be integrated with closed-loop anesthesia delivery 

systems, enabling automated titration of anesthetic agents based on real-time patient data [59]. Integration with 

telemedicine platforms could allow for remote monitoring and support by expert anesthesiologists, particularly in 

resource-limited settings [60]. Seamless integration of AI systems with electronic health records and clinical decision 

support tools could provide a more comprehensive view of the patient's health status and facilitate informed decision-

making [61]. 
Continuous learning and model adaptation 

As AI and ML models are deployed in clinical practice, it is essential to ensure their continuous learning and adaptation 

to new data and changing patient populations. Incremental learning techniques, such as online learning and transfer 

learning, can enable AI models to adapt to new data patterns and maintain their performance over time [62]. Continuous 

monitoring and validation of AI model performance in real-world settings are crucial to detect and mitigate potential 

biases or performance degradation [63]. Establishing frameworks for continuous learning and model adaptation is 

necessary to ensure the long-term effectiveness and reliability of AI systems in anesthesia monitoring [64]. 

 

Table 2: Applications of AI and ML in Anesthesia Monitoring 

Application Area Technique Used Example 

Study 

Outcome 

Prediction of Adverse 

Events 

Deep learning, Gradient 

Boosting Machines 

Kang et al., 

Lee et al. 

Achieved AUROC of 0.92 

(hypotension) and 0.91 (hypoxemia). 

Optimization of Drug 

Dosing 

Artificial Neural Networks Sakthivel et al. Optimized propofol dosing considering 

patient-specific factors. 

Monitoring Depth of 

Anesthesia 

Deep learning (CNNs) Lee et al. Predicted BIS index with a mean 

absolute error of 4.4 BIS units. 

Postoperative Pain 

Management 

Random Forests Tighe et al. Predicted postoperative pain intensity 

with AUROC of 0.81. 
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Monitoring 

Neuromuscular Blockade 

Decision Trees Vas et al. Predicted need for neostigmine 

reversal with 88% accuracy. 

 

Table 3: Challenges in AI and ML for Anesthesia Monitoring 

Challenge Description Proposed Solutions 

Data Quality and 

Availability 

Unstructured, noisy, incomplete data. Standardized data collection protocols, 

enhanced data sharing. 

Interpretability and 

Explainability 

Lack of transparency in AI model 

decision-making. 

Development of explainable AI techniques 

(e.g., feature importance analysis). 

Ethical Considerations Concerns around patient privacy, 

algorithmic bias, and equitable treatment. 

Engaging stakeholders, ensuring fair model 

training, robust privacy measures. 

Regulatory Challenges Limited frameworks for AI integration in 

clinical practice. 

Clear guidelines from regulatory bodies, 

collaborative research. 

 

Table 4: Future Directions for AI and ML in Anesthesia Monitoring 

Future Direction Description 

Real-Time Decision Support Systems Development of systems providing real-time guidance during anesthesia. 

Personalized Anesthesia Care Tailoring anesthesia plans based on patient-specific data. 

Integration with Medical Devices Combining AI models with existing medical systems for seamless 

workflows. 

Continuous Learning and Model 

Adaptation 

Implementing systems that evolve with new data and improve over time. 

Table 5: Key Outcomes and Recommendations 

Aspect Findings Recommendation 

Potential Impact on 

Anesthesia Practice 

Improved safety, reduced cognitive 

workload, personalized care. 

Invest in developing AI-powered decision support 

tools. 

Need for Further 

Research 

Challenges with data, model 

interpretability, and integration. 

Foster collaboration between researchers, 

clinicians, and regulatory bodies to address gaps. 

 

CONCLUSION 
This review article has explored the current state of AI and ML techniques in anesthesia monitoring, highlighting their 

potential applications, challenges, and future directions. AI and ML have shown promise in predicting adverse events, 

optimizing anesthetic drug dosing, monitoring depth of anesthesia, managing postoperative pain, and monitoring 

neuromuscular blockade. However, challenges related to data quality, interpretability, ethics, regulation, and integration 

with clinical workflows need to be addressed to realize the full potential of these technologies. 

Potential impact of AI and ML on anesthesia practice 

The integration of AI and ML in anesthesia monitoring has the potential to revolutionize anesthesia practice. These 

technologies can assist anesthesiologists in making informed decisions, improving patient safety, and optimizing patient 

outcomes. AI-powered decision support systems can enhance situational awareness, reduce cognitive workload, and 

provide personalized anesthesia care. The integration of AI with other medical devices and systems can streamline 
anesthesia monitoring and delivery, leading to more efficient and effective patient care. 

Call for further research and development 

Despite the promising applications of AI and ML in anesthesia monitoring, further research and development are needed 

to address the challenges and limitations discussed in this review. Collaborative efforts among researchers, clinicians, 

industry partners, and regulatory bodies are essential to advance the field and translate these technologies into clinical 

practice. Future research should focus on developing robust and interpretable AI models, establishing data quality 

standards, addressing ethical and regulatory challenges, and evaluating the impact of AI-based systems on patient 

outcomes and healthcare costs. By investing in further research and development, we can harness the full potential of AI 

and ML in anesthesia monitoring and improve the quality and safety of anesthesia care for patients worldwide. 
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